
Physicians' Test Ordering Tendencies : The Non- EBM influences

Amit K. Ghosh, MD, FACP Associate Professor of Medicine Mayo Clinic College of Medicine Rochester, MN, USA ghosh.amit@mayo.edu

Acknowledgments

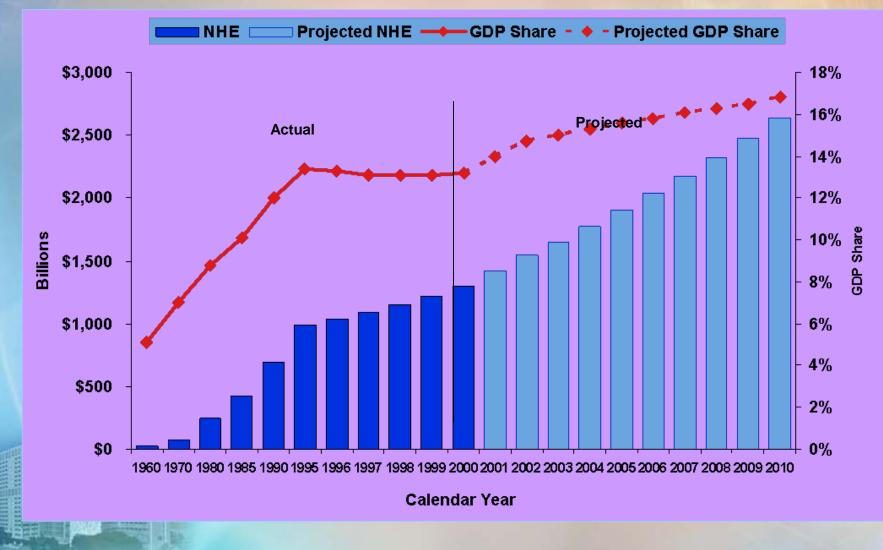
Dr. Richa Sood – Preventive Medicine Mayo Clinic , Rochester

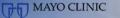
 Dr. Amit Sood- Instructor of Medicine Mayo Clinic, Rochester

YO

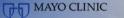
MAYO CLINIC

Assumption: Increase instruction in EBM since 1992


Decrease practitioner variability. Optimize patient care

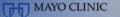


National Health Expenditure (1960-2010)


Source: CMS, Office of the Actuary, clational Health Statistics Group

Study Aim

MAYO


To understand the non-EBM determinants of test ordering

Methods

MAYO

- Study design, quality, and limitations were independently abstracted by 2 reviewers
- Exclusions: letters to the editor, review articles and editorials

Methods

AYO

Databases searched:

- Medline 1988-2004
- Embase 1988-2004
- Psychlnfo 1984-2004
- Web of Science 1993-2004
- Educational websites
- Hand searching of Bibliography from key articles

Methods

MAYO

Search terms:

In MEDLINE and Embase

"laboratory techniques and procedures" (also used diagnostic tests, laboratories, hospital/utilization) AND Physician's practice patterns (also used unnecessary procedures, guideline adherence, and attitude of health personnel)

Specifically in EMBASE

"Diagnostic test or laboratory test" AND (Professional practice, primary medical care, medical decision making)

In WOS

Test order\$ or diagnostic test\$ or laboratory test\$ AND order\$ or behavior\$

RESULTS

:10

253 articles reviewed

MAYO CLINIC

- 92 met inclusion criteria
- 59 articles- Physician variables
- 24 studies- Patient related factors
- 6 studies- Disease related factors
- 17 studies- Effect of guideline

Physician Variables

MAYO CLINIC

Physician Variables

Specialization

Location

Age / Gender

Practice setting

Belief systems

Financial incentive

Malpractice fears

Knowledge

Physician Variables : Specialization

Specialists ordered more tests compared to PCPs

 Acute LBP (1580 patients): Radiography was ordered by orthopedic surgeons in 70% compared to PCPs in 41%

(Carey et al; Arch Int. Med; 1996)

 Office visits (1.12 billion): Cardiologists ordered exercise stress tests, 3.7 (95% CI, 2.7-5.1) more commonly in office visits compared to Primary care physicians (after adjustment for clinical and non-clinical variables)

(Cohen et al Am Heart J, 1999)

Physician Variables : Age & Gender

- Routine tests for surgical consultations: Older primary care physicians ordered more routine ECGs and routine labs (Stafford, R.S. et al. Arch Intern Med, 2001. 161(19): 2351-5; Kristiansen, I.S. et al. Fam Pract, 1992. 9(1): p. 22-7)
- USPSTF guidelines adherence: Younger family physicians adhered more to guidelines compared to older colleagues (Stange, K.C., et al., J Fam Pract, 1994. 38(3): p. 231-7)
- Referrals to specialists: Female physicians more commonly referred patients to specialists (Franks, P., et al., J

Gen Intern Med, 2000. 15(3):163-8)

Physician Variables : Practice setting

 Solo practitioners v group practices: Solo practitioners ordered more imaging tests and less
preventive screening (Carey, T.S., et al. Ann Intern Med, 1996. 125(10): p. 807-14; Stange, K.C., et al. J Fam Pract, 1994. 38(3): 231-7)

 Hospital based v non-hospital based physicians: Hospital based physicians ordered more tests

(Stafford, R.S. et al. Arch Intern Med, 2001. 161(19): p. 2351-5; Bushnell, C., et al. Neurology, 2001. 56(5): p. 624-7)

Academic v Non-academic setting: Academic physicians had a lower threshold for test ordering

(Winkenwerder W, et al. JGIM 1993;8(7):369-73)

Physician Variables : Belief systems

- Belief in usefulness of screening:
- * If physicians doubted the efficacy or usefulness of a screening modality, they didn't offer it to their patients

(Turner, B., et al., J Gen Intern Med, 2003. 18(5): 357-63; Taylor, V.M., et al. Cancer Detect Prev, 1994. 18(6): p. 455-62).

- * If physicians believed that the screening test improved QOL and survival, the test was ordered more frequently (Hicks, R.J., et al. Arch Fam Med, 1995. 4(4): p. 317-22)
- Belief in therapeutic value of a test: Personal belief that a normal test provides reassurance and psychological satisfaction led to more test ordering
- Little P, et al. Family Practice 1998;15(3):264-65)

Physician Variables : Financial incentive

 ECG and EEG: Physicians billing for ECG or EEG readings ordered them more often

(Birbeck, G.L., et al., Neurology, 2004. 62(1): p. 119-21; Stafford, R.S., et al. Arch Intern Med, 2001. 161(19): p. 2351-5)

 Imaging studies: Physicians owning an interest in an imaging facility or equipment ordered imaging tests more often

(Carey, T.S., et al. Ann Intern Med, 1996. 125(10): p. 807-14)

 Source of payment: Physicians ordered more tests if pay source was private insurance compared to Medicare

(Cohen, M.C., et al. Am Heart J, 1999. 138(6 Pt 1): p. 1019-24).

Physician Variables: Fear of litigation

 Overestimation of malpractice risks:
Physicians overestimated the risk of being sued by 3 fold

(Lawthers, A.G., et al., J Health Polit Policy Law, 1992. 17(3): p. 463-82).

 Percentage of tests ordered to prevent lawsuits: Family practitioners reported that 27% of the tests ordered were to prevent a law suit

(Van Boven K, et al. Journal of Family Practice 1997;44(5):468-72).

Effect on practice patterns: Fear of litigation resulted in increased specialty referrals

(Franks, P., et al., *Why do physicians vary so widely in their referral rates?* J Gen Intern Med, 2000. 15(3): p. 163-8).

Physician Variables: Knowledge and Experience

Deficiency in Physician Knowledge base led to:

* Inappropriate test ordering for Lyme disease

(Eppes, S.C., et al. Clin Pediatr (Phila), 1994. 33(3): p. 130-4)

* Poor follow up of positive Hepatitis C screening

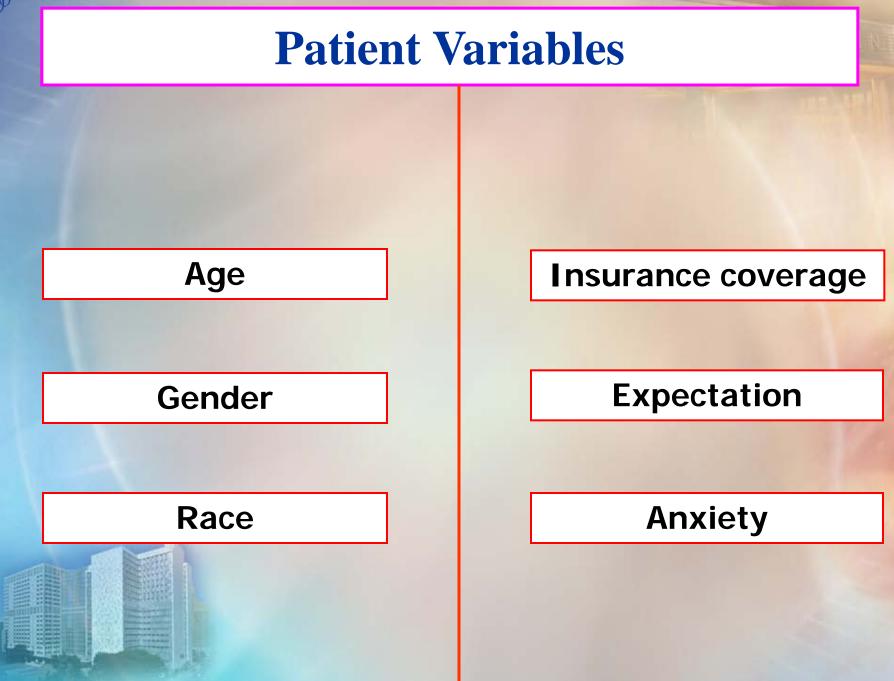
(Woodall, D.W., et al. J Fam Pract, 1994. 39(3): p. 257-61)

Good knowledge base led to:

* Appropriate genetic testing for germ line mutations

(Wideroff, L., et al., Cancer Epidemiol Biomarkers Prev, 2003. 12(4): p. 295-

303).


Effect of experience on test ordering: The effect was variable.

(Scholer SJ, et al. Archives of Pediatrics & Adolescent Medicine 1996;150(11):1154-9).

Patient Variables

Patient variables: Age, Gender, Race

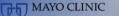
- <u>AGE</u>: Older patients got more:
 - 'Routine' ECGs
 - 'Baseline' screening tests in normal state of health
 - Tests for preoperative evaluation.
- GENDER: Men were more likely to get:

- Routine ECGs, ETTs, and colorectal cancer screening

<u>RACE</u>: Caucasians got more:
CT/MRI for low back pain evaluation
ETTs

Patient variables: Insurance Status

- Privately insured patients compared to others had more:
 - * Routine lab testing
 - * Screening tests and
 - * Special testing


Patient variables: Expectations, inquiry, anxiety

 Patients expectations and inquiry: generated more baseline screening tests, even without an actual medical indication

 Anxious patients: More likely to get tested particularly for atypical symptoms

Other variables with Increased test ordering

Day of the week	More tests ordered on
(Cheng et al. Laboratory Hematology	Mondays and Fridays than
2003;9(4):207-13)	other days
Seasonal variation	More tests ordered from
(McGillivray DL, et al. American Journal of	July-Nov compared to Mar-
Diseases of Children 1993;147(8):870-74)	Jun
Use of local practice guidelines (Wang et al. Archives of Internal Medicine 2002;162(16):1885-90)	Use of local practice guidelines led to decreased test ordering
Easy availability of lab test on the laboratory order form (Zaat et al. Medical Care 1992;30(3):189-98)	More tests ordered; test ordering frequency decreased with alteration in the form
Advertisement	Genetic studies of germ line
(Wideroff et al. Cancer Epidemiol Biomarkers	mutations ordered more
Prev, 2003. 12(4): p. 295-303)	after media attention

Conclusions

- Several non-EBM variables affect physician test ordering.
- Some of these variables can be modified by targeted education, legislative actions and other interventions.

 Excess test ordering significantly contributes towards health care costs.

Thank you!

